prise at least one enzyme (generally polymerase), primers, and nucleoside triphosphates as needed. [0142] In a preferred embodiment when target analytes are amplified before being processed in the magnetic microchannel, the primers for the amplification reactions can be conjugated to a magnetic particle as described above. Thus the amplification products will be simultaneously labeled with magnetic labels and will be suitable for processing in the magnetic microchannel. Alternatively, ordinary, nonconjugated primers are used in an amplification reaction, and the amplified products will then be subjected to a subsequent labeling reaction prior to the processing in the magnetic microchannel. [0143] General techniques for nucleic acid amplification are discussed below. In most cases, double stranded target nucleic acids are denatured to render them single stranded so as to permit hybridization of the primers and other probes of the invention. A preferred embodiment utilizes a thermal step, generally by raising the temperature of the reaction to about 95° C., although pH changes and other techniques such as the use of extra probes or nucleic acid binding proteins may also be used. [0144] A probe nucleic acid (also referred to herein as a primer nucleic acid) is then contacted to the target sequence to form a hybridization complex. By "primer nucleic acid" herein is meant a probe nucleic acid that will hybridize to some portion, i.e. a domain, of the target sequence. Probes of the present invention are designed to be complementary to a target sequence (either the target sequence of the sample or to other probe sequences, as is described below), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions. [0145] A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions; see for example Maniatis et al., Molecular Cloning: A Laboratory Manual, 2d Edition, 1989, and Short Protocols in Molecular Biology, ed. Ausubel, et al, hereby incorporated by reference. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g. 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. The hybridization conditions may also vary when a non-ionic backbone, i.e. PNA is used, as is known in the art. In addition, cross-linking agents may be added after target binding to cross-link, i.e. covalently attach, the two strands of the hybridization complex. [0146] Thus, the assays are generally run under stringency conditions which allows formation of the hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc. [0147] These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Pat. No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding. [0148] The size of the primer nucleic acid may vary, as will be appreciated by those in the art, in general varying from 5 to 500 nucleotides in length, with primers of between 10 and 100 being preferred, between 15 and 50 being particularly preferred, and from 10 to 35 being especially preferred, depending on the use and amplification technique. [0149] In addition, the different amplification techniques may have further requirements of the primers, as is more fully described below. [0150] Once the hybridization complex between the primer and the target sequence has been formed, an enzyme, sometimes termed an "amplification enzyme", is used to modify the primer. As for all the methods outlined herein, the enzymes may be added at any point during the assay, either prior to, during, or after the addition of the primers. The identification of the enzyme will depend on the amplification technique used, as is more fully outlined below. Similarly, the modification will depend on the amplification technique, as outlined below, although generally the first step of all the reactions herein is an extension of the primer, that is, nucleotides are added to the primer to extend its length. [0151] Once the enzyme has modified the primer to form a modified primer, the hybridization complex is disassociated. Generally, the amplification steps are repeated for a period of time to allow a number of cycles, depending on the number of copies of the original target sequence and the sensitivity of detection, with cycles ranging from 1 to thousands, with from 10 to 100 cycles being preferred and from 20 to 50 cycles being especially preferred. [0152] After a suitable time or amplification, the modified primer is moved to a detection module and incorporated into an assay complex, as is more fully outlined below. In some specific embodiments the assay complex is covalently attached to an electrode, and comprises at least one electron transfer moiety (ETM), described below. Electron transfer